电子电路是由各种电子器件组成的,因此学习电子电路时,必须要熟悉各种电子器件性能,今天就给大家讲解电容器,主要内容如下:
一.电容器的定义
二.电容器的基本原理
三.电容器的分类
四.电容器的作用
五.电容器的主要参数
一.电容器的定义
电容,和电感、电阻一起,是电子学三大基本无源器件在电子元件领域中,电容器是电子设备中大量使用的电子元件之一。首先,我们来看看电容的定义:
电容器,通常简称其容纳电荷的本领为电容,顾名思义,是“装电的容器”,是一种容纳电荷的器件。电容器是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。此外,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。
二.电容器的基本原理
电容,和电感、电阻一起,是电子学三大基本无源器件;电容的功能就是以电场能的形式储存电能量。
以平行板电容器为例,简单介绍下电容的基本原理
如上图所示,在两块距离较近、相互平行的金属平板上(平板之间为电介质)加载一个直流电压;稳定后,与电压正极相连的金属平板将呈现一定量的正电荷,而与电压负极相连的金属平板将呈现相等量的负电荷;这样,两个金属平板之间就会形成一个静电场,所以电容是以电场能的形式储存电能量,储存的电荷量为Q。
电容储存的电荷量Q与电压U和自身属性(也就是电容值C)有关,也就是Q=U*C。根据理论推导,平行板电容器的电容公式如下:
三.电容器的分类
电容器的种类很多,根据功能和应用领域,主要可分为普通电容器、电解电容器和可变电容器三大类。
1.0瓷介电容器(CC)
结构:用陶瓷材料作介质,在陶瓷表面涂覆一层金属(银)薄膜,再经高温烧结后作为电极而成。瓷介电容器又分1类电介质(NPO、CCG);2类电介质(X7R、2X1)和3类电介质(Y5V、2F4)瓷介电容器。
用途:主要应用于高频电路中。
2.0涤纶电容器(CL)
结构:涤纶电容器,是用有极性聚脂薄膜为介质制成的具有正温度系数(即温度升高时,电容量变大)的无极性电容。
用途:一般应用于中、低频电路中。
常用的型号有CL11、CL21等系列。
3.0聚苯乙烯电容器(CB)
结构:有箔式和金属化式两种类型。
用途:一般应用于中、高频电路中。
常用的型号有CB10、CB11(非密封箔式)、CB14~16(精密型)、CB24、CB25(非密封型金属化)、CB80(高压型)、CB40(密封型金属化)等系列。
4.0聚丙烯电容器(CBB)
结构:用无极性聚丙烯薄膜为介质制成的一种负温度系数无极性电容。有非密封式(常用有色树脂漆封装)和密封式(用金属或塑料外壳封装)两种类型。
用途:一般应用于中、低频电子电路或作为电动机的启动电容。
常用的箔式聚丙烯电容:CBB10、CBB11、CBB60、CBB61等;金属化式聚丙烯电容:CBB20、CBB21、CBB等系列。
5.0独石电容器
结构:独石电容器是用钛酸钡为主的陶瓷材料烧结制成的多层叠片状超小型电容器。
用途:广泛应用于谐振、旁路、耦合、滤波等。
常用的有CT4(低频)、CT42(低频);CC4(高频)、CC42(高频)等系列。
6.0云母电容器(CY)
结构:有箔式和金属化式两种类型。
用途:一般应用于中、高频电路中。
常用的型号有CB10、CB11(非密封箔式)、CB14~16(精密型)、CB24、CB25(非密封型金属化)、CB80(高压型)、CB40(密封型金属化)等系列。
7.0纸介电容器(CZ)
结构:有箔式和金属化式两种类型。
用途:一般应用于中、高频电路中。
常用的型号有CB10、CB11(非密封箔式)、CB14~16(精密型)、CB24、CB25(非密封型金属化)、CB80(高压型)、CB40(密封型金属化)等系列。
8.0金属化纸介电容器(CJ)
结构:金属化纸介电容器采用真空蒸发技术,在涂有漆膜的纸上再蒸镀一层金属膜作为电极而成。
优点:与普通纸介电容相比,体积小,容量大,击穿后能自愈能力强。
常见有CJ10、CJ11等系列。
9.0铝电解电容器(CD)
结构:有极性铝电解电容器是将附有氧化膜的铝箔(正极)和浸有电解液的衬垫纸,与阴极(负极)箔叠片一起卷绕而成。外型封装有管式、立式。并在铝壳外有蓝色或黑色塑料套。
用途:通常在直流电源电路或中、低频电路中起滤波、退耦、信号耦合及时间常数设定、隔直流等作用。
10.0云母微调电容器(CY)
结构:云母微调电容器由定片和动片构成,定片为固定金属片,其表面贴有一层云母薄片作为介质,动片为具有弹性的铜片或铝片,通过调节动片上的螺钉调节动片与定片之间的距离,来改变电容量。云母微调电容器有单微调和双微调之分。
用途:应用于晶体管收音机、电子仪器、电子设备中。
11.0瓷介微调电容器(CC)
结构:瓷介微调电容器是用陶瓷作为介质。在动片(瓷片)与定片(瓷片)上均镀有半圆形的银层,通过旋转动片改变两银片之间的相对位置,即可改变电容量的大小。
用途:应用于晶体管收音机、电子仪器、电子设备中。
12.0薄膜微调电容器
结构:薄膜微调电容器是用有机塑料薄膜作为介质,即在动片与定片(动、定片均为半圆形金属片)之间加上有机塑料薄膜,调节动片上的螺钉,使动片旋转,即可改变容量。
薄膜微调电容器一般分为双微调和四微调。有的密封双连或密封四连可变电容器上自带薄膜微调电容器,将微调电容器安装在外壳顶部,使用和调整就更方便了。
13.0空气可变电容器(CB)
结构:电极由两组金属片组成。一组为定片,一组为动片,动片与定片之间以空气作为介质。当转动动片使之全部旋进定片时,其电容量最大,反之,将动片全部旋出定片时,电容量最小。
空气可变电容器有单连和双连之分。
14.0薄膜可变电容器
结构:薄膜可变电容器是在其动片与定片之间加上塑料薄膜作为介质,外壳为透明或半透明塑料封装,因此也称密封单连或密封双连和密封四连可变电容器。
用途:单连主要用在简易收音机或电子仪器中;双连用在晶体管收音机和电子仪器、电子设备中;四连常用在AF/FM多波段收音机。
四.电容器的作用
电容的作用和用途一般都有好多种,如:在旁路、去耦、滤波、储能方面的作用;在完成振荡、同步以及时间常数的作用……下面来详细分析一下:
隔直流:作用是阻止直流通过而让交流通过。
旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。
旁路电容:旁路电容,又称为退耦电容,是为某个器件提供能量的储能器件。
它利用了电容的频率阻抗特性,理想电容的频率特性随频率的升高,阻抗降低,就像一个水塘,它能使输出电压输出均匀,降低负载电压波动。
旁路电容要尽量靠近负载器件的供电电源管脚和地管脚,这是阻抗要求。
在画PCB时候特别要注意,只有靠近某个元器件时候才能抑制电压或其他输信号因过大而导致的地电位抬高和噪声。
说白了就是把直流电源中的交流分量,通过电容耦合到电源地中,起到了净化直流电源的作用。如图C1为旁路电容,画图时候要尽量靠近IC1。
图C1
去耦电容:去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。
它的容量根据信号的频率、抑制波纹程度而定,去耦电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄放途径。
高频旁路电容一般比较小,根据谐振频率一般取0.1F、0.01F等。而去耦合电容的容量一般较大,可能是10F或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。如图C3为去耦电容。
请图C3点击(最多18字)
它们的区别:旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。
耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路。
用电容做耦合的元件,是为了将前级信号传递到后一级,并且隔断前一级的直流对后一级的影响,使电路调试简单,性能稳定。
如果不加电容交流信号放大不会改变,只是各级工作点需重新设计,由于前后级影响,调试工作点非常困难,在多级时几乎无法实现。
滤波:这个对电路而言很重要,CPU背后的电容基本都是这个作用。
即频率f越大,电容的阻抗Z越小。当低频时,电容C由于阻抗Z比较大,有用信号可以顺利通过;当高频时,电容C由于阻抗Z已经很小了,相当于把高频噪声短路到GND上去了。
滤波作用:理想电容,电容越大,阻抗越小,通过的频率也越高。
电解电容一般都是超过1uF,其中的电感成分很大,因此频率高后反而阻抗会大。
我们经常看见有时会看到有一个电容量较大电解电容并联了一个小电容,其实大的电容通低频,小电容通高频,这样才能充分滤除高低频。
电容频率越高时候则衰减越大,电容像一个水塘,几滴水不足以引起它的很大变化,也就是说电压波动不是你很大时候电压可以缓冲,如图C2:
图C2温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
分析:由于定时电容的容量决定了行振荡器的振荡频率,所以要求定时电容的容量非常稳定,不随环境湿度变化而变化,这样才能使行振荡器的振荡频率稳定。
因此采用正、负温度系数的电容并联,进行温度互补。
当工作温度升高时,Cl的容量在增大,而C2的容量在减小,两只电容并联后的总容量为两只电容容量之和,由于一个容量在增大而另一个在减小,所以总容量基本不变。
同理,在温度降低时,一个电容的容量在减小而另一个在增大,总的容量基本不变,稳定了振荡频率,实现温度补偿目的。
计时:电容器与电阻器配合使用,确定电路的时间常数。
输入信号由低向高跳变时,经过缓冲1后输入RC电路。
电容充电的特性使B点的信号并不会跟随输入信号立即跳变,而是有一个逐渐变大的过程。
当变大到一定程度时,缓冲2翻转,在输出端得到了一个延迟的由低向高的跳变。
时间常数:以常见的RC串联构成积分电路为例,当输入信号电压加在输入端时,电容上的电压逐渐上升。
而其充电电流则随着电压的上升而减小,电阻R和电容C串联接入输入信号VI,由电容C输出信号V0,当RC(τ)数值与输入方波宽度tW之间满足:τ》》tW,这种电路称为积分电路。
调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。
变容二极管的调谐电路
因为lc调谐的振荡电路的谐振频率是lc的函数,我们发现振荡电路的最大与最小谐振频率之比随着电容比的平方根变化。
此处电容比是指反偏电压最小时的电容与反偏电压最大时的电容之比。
因而,电路的调谐特征曲线(偏压一谐振频率)基本上是一条抛物线。
整流:在预定的时间开或者关半闭导体开关元件。
储能:储存电能,用于必要的时候释放。例如相机闪光灯,加热设备等等。
一般地,电解电容都会有储能的作用,对于专门的储能作用的电容,电容储能的机理为双电层电容以及法拉第电容。
其主要形式为超级电容储能,其中超级电容器是利用双电层原理的电容器。
当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷。
在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场。
这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。
五.电容器的主要参数
1、标称电容量和允许偏差
标称电容量是标志在电容器上的电容量。
电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。在标准JISC规定:铝电解电容的电容量的测量条件是在频率为Hz,最大交
流电压为0.5Vrms,DCbias电压为1.5~2.0V的条件下进行。可以断言,铝电解电容器的容量随频率的增加而减小。
电容器中存储的能量
E=CV^2/2
电容器的线性充电量
I=C(dV/dt)
电容的总阻抗(欧姆)
Z=√[RS^2+(XC–XL)^2]
容性电抗(欧姆)
XC=1/(2πfC)
电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。
精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%)
一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。
2、额定电压
在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。
3、绝缘电阻
直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻。
当电容较小时,主要取决于电容的表面状态,容量〉0.1uf时,主要取决于介质的性能,绝缘电阻越大越好。
电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。
4、损耗
电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。
在直流电场的作用下,电容器的损耗以漏导损耗的形式存在,一般较小,在交变电场的作用下,电容的损耗不仅与漏导有关,而且与周期性的极化建立过程有关。
5、频率特性
随着频率的上升,一般电容器的电容量呈现下降的规律。
电容器参数的基本公式
6、相位角Ф
理想电容器:超前当前电压90度
理想电感器:滞后当前电压90度
理想电阻器:与当前电压的相位相同
7、耗散系数(%)
损耗角正切值Tanδ
在电容器的等效电路中,串联等效电阻ESR同容抗1/ωC之比称之为Tanδ,这里的ESR是在Hz下计算获得的值。显然,Tanδ随着测量频率的增加而变大,随测量温度的下降而增大。
D.F.=tanδ(损耗角)=ESR/Xc=(2πfC)(ESR)
损耗因数,因为电容器的泄漏电阻、等效串联电阻和等效串联电感,这三项指标几乎总是很难分开,所以许多电容器制造厂家将它们合并成一项指标,称作损耗因数,主要用来描述电容器的无效程度。损耗因数定义为电容器每周期损耗能量与储存能量之比。又称为损耗角正切。
图1中,电容的泄露电阻Rp、有效串联电阻Rs和有效串联电感L式寄生元件,可能会降低外部电路的性能。一般将这些元件的效应合并考虑,定义为损耗因数或DF。
电容的泄漏是指施加电压时流过电介质的微小电流。虽然模型中表现为与电容并联的简单绝缘电阻Rp,但实际上泄露与电压并非线性关系。制造商常常将将泄漏规定为MΩ-μF积,用来描述电介质的自放电时间常数,单位为秒。其范围介于1秒或更短与数百秒之间,前者如铝和钽电容,后者如陶瓷电容。玻璃电容的自放电时间常数为1,或更大;特氟龙和薄膜电容(聚苯乙烯、聚丙烯)的泄漏性能最佳,时间常数超过1,,MΩ-μF。对于这种器件,器件外壳的表面污染或相关配线、物理装配会产生泄漏路径,其影响远远超过电介质泄漏。
有效串联电感ESL(图1)产生自电容引脚和电容板的电感,它能将一般的容抗变成感抗,尤其是在较高频率时;其幅值取决于电容内部的具体构造。管式箔卷电容的引脚电感显著大于模制辐射式引脚配置的引脚电感。多层陶瓷和薄膜电容的串联阻抗通常最低,而铝电解电容的串联阻抗通常最高。因此,电解电容一般不适合高频旁路应用。
电容制造商常常通过阻抗与频率的关系图来说明有效串联电感。不出意料的话,这些图会显示:在低频时,器件主要表现出容性电抗;频率较高时,由于串联电感的存在,阻抗会升高。
有效串联电阻ESR(图1的电阻Rs)由引脚和电容板的电阻组成。如上文所述,许多制造商将ESR、ESL和泄漏的影响合并为一个参数,称为“损耗因数”或DF。损耗因数衡量电容的基本无效性。制造商将它定义为每个周期电容所损失的能量与所存储的能量之比。特定频率的等效串联电阻与总容性电抗之比近似于损耗因数,而前者等于品质因数Q的倒数。
损耗因数常常随着温度和频率而改变。采用云母和玻璃电介质的电容,其DF值一般在0.03%至1.0%之间。室温时,陶瓷电容的DF范围是0.1%至2.5%。电解电容的DF值通常会超出上述范围。薄膜电容通常是最佳的,其DF值小于0.1%。
8、品质因素
Q=cotanδ=1/DF
9、等效串联电阻ESR(欧姆)
ESR=(DF)Xc=DF/2πfC
10、功率消耗
PowerLoss=(2πfCV2)(DF)
11、功率因数
PF=sinδ(lossangle)–cosФ(相位角)
12、阻抗Z
在特定的频率下,阻碍交流电流通过的电阻即为所谓的阻抗(Z)。它与电容等效电路中的电容值、电感值密切相关,且与ESR也有关系。
Z=√[ESR^2+(XL-XC)^2]
式中,XC=1/ωC=1/2πfC
XL=ωL=2πfL
电容的容抗(XC)在低频率范围内随着频率的增加逐步减小,频率继续增加达到中频范围时电抗(XL)降至ESR的值。当频率达到高频范围时感抗(XL)变为主导,所以阻抗是随着频率的增加而增加。
13、漏电流
电容器的介质对直流电流具有很大的阻碍作用。然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成的以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流。通常,漏电流会随着温度和电压的升高而增大。
14、纹波电流和纹波电压
在一些资料中将此二者称做“涟波电流”和“涟波电压”,其实就是ripplecurrent,ripplevoltage。含义即为电容器所能耐受纹波电流/电压值。它们和ESR之间的关系密切,可以用下面的式子表示:
Urms=Irms×R
式中,Vrms表示纹波电压,Irms表示纹波电流,R表示电容的ESR
由上可见,当纹波电流增大的时候,即使在ESR保持不变的情况下,涟波电压也会成倍提高。换言之,当纹波电压增大时,纹波电流也随之增大,这也是要求电容具备更低ESR值的原因。叠加入纹波电流后,由于电容内部的等效串连电阻(ESR)引起发热,从而影响到电容器的使用寿命。一般的,纹波电流与频率成正比,因此低频时纹波电流也比较低。